1 /*
2 * Copyright (C) 2010 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 package com.google.common.cache;
18
19 import com.google.caliper.AfterExperiment;
20 import com.google.caliper.BeforeExperiment;
21 import com.google.caliper.Benchmark;
22 import com.google.caliper.Param;
23 import com.google.common.primitives.Ints;
24
25 import java.util.Random;
26 import java.util.concurrent.atomic.AtomicLong;
27
28 /**
29 * Single-threaded benchmark for {@link LoadingCache}.
30 *
31 * @author Charles Fry
32 */
33 public class LoadingCacheSingleThreadBenchmark {
34 @Param({"1000", "2000"}) int maximumSize;
35 @Param("5000") int distinctKeys;
36 @Param("4") int segments;
37
38 // 1 means uniform likelihood of keys; higher means some keys are more popular
39 // tweak this to control hit rate
40 @Param("2.5") double concentration;
41
42 Random random = new Random();
43
44 LoadingCache<Integer, Integer> cache;
45
46 int max;
47
48 static AtomicLong requests = new AtomicLong(0);
49 static AtomicLong misses = new AtomicLong(0);
50
51 @BeforeExperiment void setUp() {
52 // random integers will be generated in this range, then raised to the
53 // power of (1/concentration) and floor()ed
54 max = Ints.checkedCast((long) Math.pow(distinctKeys, concentration));
55
56 cache = CacheBuilder.newBuilder()
57 .concurrencyLevel(segments)
58 .maximumSize(maximumSize)
59 .build(
60 new CacheLoader<Integer, Integer>() {
61 @Override public Integer load(Integer from) {
62 return (int) misses.incrementAndGet();
63 }
64 });
65
66 // To start, fill up the cache.
67 // Each miss both increments the counter and causes the map to grow by one,
68 // so until evictions begin, the size of the map is the greatest return
69 // value seen so far
70 while (cache.getUnchecked(nextRandomKey()) < maximumSize) {}
71
72 requests.set(0);
73 misses.set(0);
74 }
75
76 @Benchmark int time(int reps) {
77 int dummy = 0;
78 for (int i = 0; i < reps; i++) {
79 dummy += cache.getUnchecked(nextRandomKey());
80 }
81 requests.addAndGet(reps);
82 return dummy;
83 }
84
85 private int nextRandomKey() {
86 int a = random.nextInt(max);
87
88 /*
89 * For example, if concentration=2.0, the following takes the square root of
90 * the uniformly-distributed random integer, then truncates any fractional
91 * part, so higher integers would appear (in this case linearly) more often
92 * than lower ones.
93 */
94 return (int) Math.pow(a, 1.0 / concentration);
95 }
96
97 @AfterExperiment void tearDown() {
98 double req = requests.get();
99 double hit = req - misses.get();
100
101 // Currently, this is going into /dev/null, but I'll fix that
102 System.out.println("hit rate: " + hit / req);
103 }
104
105 // for proper distributions later:
106 // import JSci.maths.statistics.ProbabilityDistribution;
107 // int key = (int) dist.inverse(random.nextDouble());
108 }